Improvement in SHA-3 Algorithm using
different Internal Methods and Operations

Vanita Jain', Rishab Bansal?, Mahima Swami® and Dharmender Saini*

'Bharati Vidyapeeth’s College of Engineering, New Delhi,
vanita.jain@bharatividyapeeth.edu
2Bharati Vidyapeeth’s College of Engineering, New Delhi,
rishabbansal.it1@bvp.edu.in
3Bharati Vidyapeeth’s College of Engineering, New Delhi, mahima.it1@bvp.edu.in
4Bharati Vidyapeeth’s College of Engineering, New Delhi, dsaini77@gmail.com

Abstract. In this paper, we propose a novel approach to change the in-
ternal architecture of Schoolbook implementation of SHA-3 Algorithm.
With this new architecture and internal operations we aim at decreasing
the time taken by the original algorithm. Specifically, we reduce the num-
ber of internal rounds of the algorithm and to compensate for the loss in
confusion and diffusion we make SHA-3’s internal operations more com-
plex. We change the algorithm on its core bit level and make its internal
operation more interdependent on the neighbouring bits to achieve more
diffusion which results in better confusion.

Keywords: hashing functions, information security, cryptog- raphy, SHA-
3, secure hashing, sponge construction, KECCAK

1 Introduction

Cryptographic hash functions [1] [2], especially for authentication applications,
such as message authentication codes, password protection and digital signature,
are of major importance for a number of security applications. Cryptography is a
form of testing data integrity. It is used to make sure no access or modification is
made to the data transmitted in a message. [3] The intensity of SHA [4] mainly
depends on a range of factors. These include the facility to calculate the hash
value, the failure to generate a message that has a hash, the inability to modify
a message without altering its hash. In addition to this, two separate messages
of the same hash value can not be identified. Safe hashing algorithms can not
only protect data from misuse or modification but also guarantee user authen-
tication. SHA is used to sign content with a digital fingerprint and can be used
for encrypting and decrypting passwords by many operating systems. Even in
wireless communications, SHA-1 and SHA-2 are very important and are widely
used for secure communication [5]. It shows, however, numerous weaknesses and
limitations which cause an appropriate replacement to be found. The hash func-
tions [6] [7] [8] can be classified into 2 types: Keyed and Unkeyed. Keyed Hash
functions can be used for Message Authentication Code (MAC) [9]. It requires

two inputs, a message and a secret key. Unkeyed Hash functions can be classified
into 3 categories: block ciphers, customised functions arithmetic functions. Hash
functions have one way property which means computing things in one direction
is easy and the vice versa is hard. For example, for a message m, it is easy to
calculate H(m)=M, but it is hard to obtain m from a given M. Collision attack
[10] means finding a message n such that H(m) = H(n).

2 Related Work

After some successful attacks on SHA-1 [11] [12], NIST launched a public com-
petition to promote the development of a new cryptographic hash function. The
winning algorithm of this competition will be named as SHA-3. Team Keccak
won the competition and their algorithm is specified in Federal Information Pro-
cessing Standard (FIPS) 180-3, Secure Hash Standard. Keccak is based on the
sponge construction. [13] The benefit of using this type of architecture is to
obtain a more secure and robust against generic and known attacks. Sponge
construction also makes the use of the compression function more simple and
flexible. Keccak has 2 phases: Absorption(input phase) and Squeezing(output
phase). In the Absorption Phase, input blocks are XORed into a sub-state, this
state is then converted as a whole using the permutation function. In Squeezing
Phase, output blocks are obtained from the same subset and altered with the
state transformation function. The size of this altered state is called rate(r). The
size of the part which remains unaltered is called capacity(c). For a permutation
function that computes b-bit blocks, capacity is equal to b-r. Security level of the
scheme depends upon the capacity of the algorithm. Maximum security level of
the scheme is usually half of capacity 2¢/2 . Padding makes sure that the length
of the input is divisible by r to break input into blocks. A pattern of 10*1 is
used for padding in SHA-3. The size of the input block varies depending on the
size of the output: Keccak-512 has a block size of 576 bits, Keccak-384 has 832
bits, Keccak-256 has 1088 bits and Keccak-224 has 1152. [14] SHA-3 has 5 main
functions through which the message blocks are passed 24 times, namely Iota,
Chi, Pi, Rho, Theta. The input block is broken into a tensor of 1600 bits (5 x
5 x 64). Then these 1600 bits are passed through these functions 24 times (in
original implementation). P[u,w] is an array with u,w = 0,1,2,3,4

2.1 Theta (0)

In this step, each bit is XOR-ed with 10 other neighbouring bits.[10]

Qu] = XOR(P|u,0], Plu, 1], Plu, 2], Plu, 3], Plu, 4]) (1)
R[u] = XOR(Q|u — 1], rotate(Q[u + 1],1)) (2)
Plu, w] = XOR(P[u,w], R[u]) (3)

[u,w=0,1,2,3,4]

Rishab Bansal

2.2 Rho (p)

In this step, each row of 64 bits is rotated cyclically according to the rotation
table given in Table 1[10].

Table 1. Rotation Constants (Original)

\x

11213 |4
36|13 |41|18
44110|45|2
62|16 |43|15|61
28|55|25|21|56
27)20|39(8 (14

I k=l =]

W N = o<

2.3 Pi (7)
In this step, all the bits are changed according this equation[10]:
Qlu, 2u + 3w] = Plu, w) (4)

[u,w=0,1,2,3,4]

2.4 Chi (x)

In this step, binary bit wise operations like AND, OR, XOR, NOT are performed
in the bits according to this equation:[10]

Plu,w] = XOR(Q[u, w, NOT (Q[u + 1,w]) ANDQ[u + 2, w))) (5)

[u,w=0,1,2,3,4]

2.5 Tota (¢)

To break the uniformity of the process, in this step a unique constant is XOR-ed
with the P[0,0] row. This produces entropy in the each step. The constants are
given in Table 2[10].

Rishab Bansal

Table 2. Round Constants (Original)

101] = 1 1[02] = 32898

1[03] = 9223372036854808714 1[04] = 9223372039002292224
1[05] = 32907 1[06] = 2147483649

1[07] = 9223372039002292353 1[08] = 9223372036854808585
1/09] = 138 1[10] = 136

I[11] = 2147516425 1[12] = 2147483658

1[13] = 2147516555 1[14] = 9223372036854775947
1[15] = 9223372036854808713 1[16] = 9223372036854808579
1[17] = 9223372036854808578 1[18] = 9223372036854775936
1[19] = 32778 1[20] = 9223372039002259466
1[21] = 9223372039002292353 1[22] = 9223372036854808704
1[23] = 2147483649 1[24] = 9223372039002292232

3 PROPOSED ARCHITECTURE

There are 5 main operations in KECCAK Algorithm: theta, rho, pi, chi, iota.
We changed theta, rho, chi, iota.
3.1 Theta (0)

Original implementation This is the original implementation[10] of theta in
SHA-3.

Qlu] = XOR(P|u,0], Plu, 1], Plu, 2], Plu, 3], P[u, 4]) (1)
Rlu] = XOR(Q[u — 1], rotate(Qlu + 1], 1)) (2)
Plu,w] = XOR(P[u,w], R[u]) (3)

[u,w=0,1,2,3,4]

Our implementation This is our implementation of theta method. These ex-
tra operations increases the algorithm’s diffusion factor. Instead of 10, it now
XORs each bit with 20 neighbouring bits.

Qu] = XOR(P|u,0], Plu, 1], Plu, 2], Plu, 3], P[u, 4]) (6)
Rlu] = XOR(Q[u — 1], rotate(Q[u + 1],1)) (7)
Slu] = XOR(R[u — 2], rotate(R[u — 2], 1)) (8)
T[u] = XOR(S[u — 2], rotate(S[u — 3],1)) (9)

Plu,w] = XOR(P[u,w], T[u]) (10)

[u,w=0,1,2,3,4]

Rishab Bansal

Table 3. Rotation Constants (Original)

\x

112 1|3 |4
36(3 |41{18
44(10(45|2
62|16 |43|15|61
28(55|25|21|56
27)20|39(8 (14

I k=l k=]

W N = O

3.2 Rho (p)

Original implementation Table 3[10] shows the original rotation constants.

Our implementation Table 4 shows our modified rotation constants. We
tested random values for these constants and selected those which provided
maximum diffusion properties.

Table 4. Rotation Constants (Modified)

\x

11213 |4
43|26|4 |8
34|21|53|47
60|18|37|57|4
20|17|19|41|44
25|2 |58|51(62

~| 0| ©

W N = O

3.3 Chi (x)

Original Implementation This is the original implementation[10] of the Chi
function.

Plu,w] = XOR(Q[u, w, NOT(Q[u + 1, w]) ANDQu + 2, w])) (5)
[u,w=0,1,2,3,4]
Our Implementation This is our implementation of the Chi function. We

added extra XOR and AND operations to increase the inter dependency of the
bits.

P[u’w] = XOR(Q[u,w],Q[u—?,w],Q[u+1,w])AND(NOT(Q[u—l,w])) (11)

u,w=0,1,2,3,4

Rishab Bansal

3.4 TIota (v)

Original Implementation Table 5[10] shows the original round constants. 24
Constants for 24 rounds.

Table 5. Round Constants (Original)

101] = 1 1j02] = 32898

1[03] = 9223372036854808714 1[04] = 9223372039002292224
1/05] = 32907 1[06] = 2147483649

1[07] = 9223372039002292353 1[08] = 9223372036854808585
1/09] = 138 1[10] = 136

1[11] = 2147516425 1[12] = 2147483658

1[13] = 2147516555 1[14] = 9223372036854775947
1[15] = 9223372036854808713 1[16] = 9223372036854808579
1[17] = 9223372036854808578 1[18] = 9223372036854775936
1[19] = 32778 1[20] = 9223372039002259466
1[21] = 9223372039002292353 1[22] = 9223372036854808704
1[23] = 2147483649 1[24] = 9223372039002292232

Our Implementation Table 6 shows our modified round constants. 16 Con-
stants for 16 rounds.

Table 6. Round Constants (Modified)

I[01] = 7948088626323794 1[02] = 6988136757012497
I[03] = 39791030927721416 1[04] = 10809755619314387
I[05] = 8147066428805446 1[06] = 9673464656433063
I[07] = 712894840135913 I[08] = 9856031517555377

]]

]]

]]

]]

[
I[09] = 7519438105630892 I[10] = 2180132335568229
I[11] = 22694087947679686 1[12] = 4791473861756359
I[13] = 9756078218014334 I[14] = 9910404914141336
I[15] = 7734607116733396 1[16] = 4660076906243047

4 Results

To compensate for the loss of Confusion and diffusion factor we made the inter-
nal bits more interdependent. We achieved this by adding more internal methods
and changing existing bit wise operations. After trying different combinations of
methods, operations and constants we settled on those which gave us maximum
confusion and diffusion.

Rishab Bansal

Table 7 shows the running time of original (24 round implementation) and
our modified (16 round implementation) with our changed internals and reduced
number of rounds. Table V shows an average of 16% reduction in time which
was observed for over 1,000,000 sample random inputs.

Table 7. Reduction in running time

SIZE | Original | Modified |% Decrease
(Bytes) |(seconds)|(seconds)| in time
10| 0.2071 [0.178205| 13.9546
100| 1.14742 [0.920604 | 19.7676
1000| 13.7301 | 9.46673 | 31.0512
10000| 120.569 | 110.511 | 8.3424
100000| 97.4402 | 80.9203 | 16.953
1000000| 101573 | 93112.5 8.3295

Table 8 shows some of the hashes computed on both the functions for the
same inputs. The diffusion factor can be seen in the last and second last case
where just a single change drastically changed the output.

Table 8. Sample Output

Message Original
Modified

386a35¢28e45b7e5783f6¢cf44cab696dbae
8db06a5eed53e4

c86a41008bf7dc782156c01¢c438f29871a
d535b009138acl
cdc9dbce7a7c¢d902bfclebfc142b00aaad81
2¢a835349bdd2
28c9409a4db203a5ad445cd3e233e04b98
3e550{73ce9c3a
81d968688b4bbafl13ac3d’884bf91f3e0be2
708¢53247c17
66a89460f04d70a3f18e28da3ddeffa271d1
02e179a0aad4
0cd2b4c75£337d88771fd5625228c693013f
96aa03df3b80
3a5049¢3bb1c571ef0487cbd153bed70c718
d1095283fe59

This is a
super secret
message

Cryptography

Hashing

Hashingg

To check the quality of hash being produced we ran both the implementations
on 1000 random inputs of 300+ bytes in size and changed the input by various

Rishab Bansal

degrees, mapped the corresponding changes in both the implementation. The
changes was obtained by calculating the number of bytes being changed when
the input is changed by various degrees. Table IX shows the % difference in both
the cases.

Table 9. changes produced in the output

Total changes | Total changes
Percentage Percentage
in original |in our modified| ..
change Difference
in input (%) 24 round 16 round (%)
P 0 implementation|implementation 0
10 23913 23920 -0.07
20 23916 23908 +0.08
30 23887 23904 -0.17
40 23898 23887 +0.11
50 23914 23908 +0.06

5 CONCLUSIONS

We were able to produce a 16% reduction in the running time of the schoolbook
implementation of SHA-3 without decreasing the confusion and diffusion factor
of the algorithm.

6 FUTURE SCOPE AND LIMITATIONS

This algorithm can be used in Web Browsers. SHA-2 is used in browsers because
of it’s less computation time. This algorithm can replace SHA-2 in Web Browsers
or some other light weith applications which need secure hashing in less time.
KECCAK algorithm is more secure than SHA-2 and is not vulnerable to attacks
known for SHA-1 and SHA-2 like length extension attacks. We reduced 8 rounds
in the algorithm from original 24. The algorithm is still secure from brute forcing
and general crypt-analysis. This is called computational security, because no one
has the computation power right now to brute force 16 round SHA-3 algorithm
and crack it within the relevant time frame. These changes on internal operations
and methods are done on the schoolbook implementation of SHA-3 without using
any optimisation techniques. In real world many space and time optimisation
techniques like multi-threading are done to make the code run faster. Same
practices can also be applied on this algorithm as well.

References

1. Sobti, Rajeev Ganesan, Geetha. (2012). Cryptographic Hash Functions: A Review.
International Journal of Computer Science Issues, ISSN (Online): 1694-0814. Vol
9. 461 - 479.

Rishab Bansal

Rishab Bansal

10.

11.

12.

13.

14.

. Preneel B. (2010) Cryptographic Hash Functions: 'I'neory and Practice. In: Gong

G., Gupta K.C. (eds) Progress in Cryptology - INDOCRYPT 2010. INDOCRYPT
2010. Lecture Notes in Computer Science, vol 6498. Springer, Berlin, Heidelberg
Cryptographic hash function, Aug. 2014, accessed on Dec. 2019[online] available:
en.wikipedia.org/wiki/Cryptographic_hash_function.

Sahu, Aradhana, Ghosh, Samarendra. (2017). Review Paper on Secure Hash Al-
gorithm With Its Variants. 10.13140/RG.2.2.13855.05289.

A. Moh’d, N. Aslam, H. Marzi and L. A. Tawalbeh, “Hardware Implementations of
Secure Hashing Functions on FPGAs for WSNs,” Proceedings of the 3rd Interna-
tional Conference on the Applications of Digital Information and Web Technologies
(ICADIWT 2010), Istanbul, 12-14 July 2010.

Alfred M., Oorschot P., and Vanstone S., Handbook of Applied Cryptography,
CRC press, 1997

Bruce S., Applied Cryptography: Protocols, Algorithms and Source Code in C,
John Wiley and Sons, Canada, 1996.

Stallings W., Cryptography and Network Security Principles and Practices, Pren-
tice Hall Press Upper Saddle River, 2010.

Bellare M., Canetti R., Krawczyk H. (1996) Keying Hash Functions for Message
Authentication. In: Koblitz N. (eds) Advances in Cryptology — CRYPTO ’96.
CRYPTO 1996. Lecture Notes in Computer Science, vol 1109. Springer, Berlin,
Heidelberg

Andreeva, E., Bogdanov, A., Mennink, B. et al. On security arguments of
the second round SHA-3 candidates. Int. J. Inf. Secur. 11, 103-120 (2012).
https://doi.org/10.1007/s10207-012-0156-7

Stevens, Marc Bursztein, Elie Karpman, Pierre Albertini, Ange Markov, Yarik.
(2017). The First Collision for Full SHA-1. 570-596. 10.1007/978-3-319-63688-7_19.
Wang X., Yin Y.L., Yu H. (2005) Finding Collisions in the Full SHA-1. In: Shoup
V. (eds) Advances in Cryptology — CRYPTO 2005. CRYPTO 2005. Lecture Notes
in Computer Science, vol 3621. Springer, Berlin, Heidelberg

G. Bertoni, J. Daemen, M.el Peeters and G. Van Assche, “Keccak Sponge Function
Family Main Document,” NIST, University of California Santa Barbara, Santa
Barbara, 2009.

G. Bertoni, et al., The Keccak reference, Version 3.0, January 14, 2011
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

Rishab Bansal

